

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular & Supplementary Examinations NOV-2019 ANALOG COMMUNICATIONS

(Electronics & Communication Engineering)

Time: 3 hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Draw the block diagram of Communication System and Explain the function of each block. 1 **8M b** Explain the concept of frequency mixing. **4M**

OR

- **a** Explain generation of DSB-SC signal with the help of balanced modulator using diodes. **7M** 2
 - **b** An AM transmitter radiates 9kW of power when the carrier is un-modulated and 10.125kW **5M** of power when the carrier is sinusoidal modulated. Find the modulation index & modulation. Now if another sine wave corresponding to 40% modulation is Percentage transmitted Simultaneously. Calculate total radiated power.

UNIT-II

a Draw the block diagram of indirect FM method and explain the necessity of each block. **8M** 3 **b** A 20 MHz carrier is frequency modulated by a sinusoidal signal such that the peak **4M** frequency deviation is 100 kHz. Determine the modulation index and the approximate bandwidth of the FM signal if the frequency of the modulating signal is 1 kHz.

OR

a Derive the expression for single-tone frequency modulation with necessary wave forms. **6M** 4 **b** A single-tone FM is represented by the voltage equation as: $v(t) = 12\cos(6 \times 10^6 t + 5\sin)$ **6M** 1250t). Determine the Carrier frequency, Modulating frequency, Modulation index & also find Power dissipated at 10Ω resistor.

UNIT-III

5	a Explain noise equivalent bandwidth and noise temperature.	8 M
	b Give the Quadrature representation of Narrow-band noise.	4M

OR

a Explain the noise performance of DSB-SC scheme with the help of neat block diagram. **6**M 6 **b** The noise figure of a receiver is 20dB and it is fed by a low noise amplifier which has gain **6M** of 40dB and noise temperature of 80° K.Calculate the overall noise temperature of the receiving system and the noise temperature of the receiver.

UNIT-IV

7	a	Explain natural and flat-top sampling techniques.	6M
	b	Explain generation of PAM with mathematical analysis.	6M
		OR	
8	a	What are the differences between PAM, PWM, and PPM?	6M
	b	Explain how PPM can be generated from PWM signals.	6M
		UNIT-V	
9	a	Explain about sensitivity, selectivity and fidelity.	4 M
	b	Draw block diagram of super hetero-dyne AM receiver and explain function of each block.	8M
		OR	
10	a	Compare TDM and FDM techniques.	6M
	b	A Discrete source emits one of 5 symbols once every millisecond. The symbol	6M
		Probabilities are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{16}$. Find entropy and information rate?	
		*** END ***	

Max. Marks: 60